# import warnings
# #warnings.filterwarnings('ignore')
# warnings.filterwarnings("ignore", category=FutureWarning)
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
# import warnings
# with warnings.catch_warnings():
# warnings.filterwarnings("ignore",category=DeprecationWarning)
#ENV PYTHONWARNINGS="ignore::DeprecationWarning"
#logging.captureWarnings(True)
# from warnings import filterwarnings
# filterwarnings("ignore")
import warnings
def fxn():
warnings.warn("deprecated", DeprecationWarning)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
fxn()
==============================================
import matplotlib.pyplot as plt
import matplotlib.image as img
def uk(img):
a=np. array(img)
print(type(a))
print(a.shape)
def uk0(img):
width =len(img[0])
height = len(img[1])
dim = len(img[2])
x= (width ,' x ' , height, ' x ' , dim)
print(x)
return x
def uk1(img):
width = int(img.shape[0])
height = int(img.shape[1])
x=(width ,' x ' , height)
print(x)
return x
def uk2(img):
width =len(img[0])
height = len(img[1])
x=(width ,' x ' , height)
print(x)
return x
def uk3(img):
s =len(img)
print(s)
return s
def uk4(img):
s =img.shape()
print(s)
return s
def model(img):
x=type(img)
print(x)
return x
def rgb2gray1(rgb):
return np.dot(rgb[...,:3], [0.2989, 0.5870, 0.1140])
def rgb2gray2(rgb):
return cv2.cvtColor(rgb, cv2.COLOR_BGR2GRAY)
def resize(img,b,c):
dim = (b, c)
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
return resized
def lihat(citra,label):
asli = cv2.imread(citra)
gray1 = rgb2gray1(asli)
gray2 = rgb2gray2(asli)
gray=gray2
edges = cv2.Canny(gray,width,height)
fig = plt.figure()
plt.subplot(1, 4, 1)
plt.imshow(asli)
plt.title('RGB '+label)
plt.subplot(1, 4, 2)
plt.imshow(gray1)
plt.title('Gray1 '+label)
plt.subplot(1, 4, 3)
plt.imshow(gray2)
plt.title('Gray2 '+label)
plt.subplot(1, 4, 4)
#plt.hist(gray2)
plt.imshow(edges)
plt.title('Edge '+label)
plt.show()
return 1
#####################################
cwd = os.getcwd()
dataset_dir=cwd+'\\datatraining\\'
print(cwd)
imagePaths = sorted(list(path.list_images(dataset_dir)))
size=128
labels = []
descs = []
data = []
train_set_files = os.listdir(dataset_dir) #list
Kategori = set([f.split('_')[0] for f in train_set_files])
JD=len(train_set_files)
for i in range(JD):
NF=train_set_files[i]
AL=dataset_dir + NF
label=NF.split('_')[0]
####print(label+'='+AL)
#os.path.join(dataset_dir, folder, sub_folder, filename)
#img = plt.imread(AL)
#labels.append(normalize_label(os.path.splitext(filename)[0]))
img = cv2.imread(AL)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
h, w = gray.shape
ymin, ymax, xmin, xmax = h//3, h*2//3, w//3, w*2//3
crop = gray[ymin:ymax, xmin:xmax] #43x43
#rezize = cv.resize (crop, (size, size)) #128x128
resize = cv2.resize(crop, (0,0), fx=0.5, fy=0.5) #22x22
data.append(resize)
labels.append(label)
descs.append(AL)
#print_progress(i, JD, AL)
print(Kategori)
#################################
import os
import MySQLdb
import time
from time import gmtime, strftime
from random import randint
import signal
from PIL import Image
import requests
import cv2
import numpy as np
from matplotlib import pyplot as plt
size = 128
LOCALHOST="localhost"
ROOT="root"
PASS=""
DBASE="absen_pare"
db = MySQLdb.connect(LOCALHOST,ROOT,PASS,DBASE)
cursor = db.cursor()
print ("Koneksi Ke Database")
cwd = os.getcwd()
print('PWD='+cwd)
#dataset_dir=cwd+'\\datatraining\\'
dataset_dir='C:\\xampp7\\htdocs\\_2023\\NICO\\AbsenPare\\admin\\ypathfile\\'
imagePaths = sorted(list(path.list_images(dataset_dir)))
face_cascade = cv.CascadeClassifier('haarcascade_frontalface_default.xml')
font=cv.FONT_HERSHEY_SIMPLEX
def uk(img):
a=np. array(img)
total=a.size
print(str(type(img)),' :' ,str(total),' item')
print(a.shape)
def uks(img):
a=np. asarray(img)
total=a.size
print(str(type(img)),' :' ,str(total),' item')
print(a.shape)
def getWajah(dataset_dir,NF,F1,F2):
AL=dataset_dir + NF
print(AL)
#gray = cv.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv.imread(AL)
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
roi=gray
pathsimpan = dataset_dir.replace(F1,F2)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
#cv2.rectangle(img,(x,y),(x+w=[],y+h),(255,0,0),2)
roi = gray[y:y+h, x:x+w]
#myresize = cv2.resize(roi, (0,0), fx=0.5, fy=0.5) #22x22)
GB= pathsimpan + NF
print('PathGB:',GB)
cv.imwrite(GB,roi)
h, w = roi.shape
ymin, ymax, xmin, xmax = h//3, h*2//3, w//3, w*2//3
roi2= roi[ymin:ymax, xmin:xmax] #43x43 crop
myresize = cv.resize(roi2, (0,0), fx=0.5, fy=0.5)
#myresize = cv2.resize (roi2, (size, size)) #128x128 rezize
return myresize
def updateDB(cursor,db,idx,status,dkolom1,dkolom2,nf):
sql = "UPDATE `tb_absensi` set `tag`='1',`res_masuk`='%s',`catatan_masuk`='%s',`foto_masuk2`='%s' where `id_absensi`='%s'" % (dkolom1,dkolom2,nf,idx)
if status=='Pulang':
sql = "UPDATE `tb_absensi` set `tag`='1',`res_pulang`='%s',`catatan_pulang`='%s',`foto_pulang2`='%s' where `id_absensi`='%s'" % (dkolom1,dkolom2,nf,idx)
print(sql)
v=0
try:
cursor.execute(sql)
db.commit()
v=1
except:
db.rollback()
return v
def lastDB(cursor,db,idx):
tgl=strftime("%Y-%m-%d", gmtime()) #u waktu
jam=strftime("%H:%M:%S", gmtime()) #u waktu
stgl=strftime("%Y%m%d", gmtime()) #u namafile
sjam=strftime("%H%M%S", gmtime()) #u namafile
NF="Img"+stgl+sjam+".jpg"
cursor.execute("SELECT `id_absensi` FROM `tb_absensi` where `tag`='0' order by id_absensi desc limit 0,1")
v=0
for row in cursor.fetchall():
v=row[0]
return v
Input : {1, 2, 3, 4} #SET Output : [1, 2, 3, 4] #LIST
NA = NA.astype(float)
import numpy as np
#list of strings
A = ['33.33', '33.33', '33.33', '33.37']
print A
#numpy of strings
arr = np.array(A)
print arr
#numpy of float32's
arr = np.array(A, dtype=np.float32)
print arr
#post process
print np.mean(arr), np.max(arr), np.min(arr)
import numpy as np
A = ['33.33', '33.33', '33.33', '33.37']
# convert to float
arr = np.array(map(float, A))
# calc values
print np.mean(arr), np.max(arr), np.min(arr)
To convert your strings to floats, the simplest way is a list comprehension:
A = ['33.33', '33.33', '33.33', '33.37']
floats = [float(e) for e in A]
Now you can convert to an array:
array_A = np.array(floats)
The rest is probably known to you:
mean, min, max = np.mean(array_A), np.min(array_A), np.max(array_A)
import numpy as np
A = ["33.33", "33.33", "33.33", "33.37"]
for i in range(0,len(A)):
n = A[i]
n=float(n)
A[i] = n
NA = np.asarray(A)
AVG = np.mean(NA, axis=0)
maxx = max(A)
minn = min(A)
print (AVG)
print (maxx)
print (minn)
https://www.simplilearn.com/tutorials/python-tutorial/list-to-string-in-python
https://www.freecodecamp.org/news/python-string-to-array-how-to-convert-text-to-a-list/
birthdate = "19/10/1993"
birthdate_list
= birthdate.split("/")
print(birthdate_list)
print(type(birthdate_list))
#output
#['19', '10', '1993']
#<class 'list'>
------------------------
birthdate = "19/10/1993"
birthdate_list
= birthdate.split("/")
str_to_int
= list(map(int, birthdate_list))
print(type(str_to_int))
print(str_to_int)
#output
#<class 'list'>
#[19, 10, 1993]